Two reporter systems are used to indicate that a transfection experiment was successful. Plants can be transfected with the Ti plasmids of Agrobacterium tumefaciens. When a plant is infected with A. tumefaciens containing the Ti plasmid, a crown gall tumor is induced transferring the T- DNA region.
Those cells transfected with the T-DNA are induced to grow as well as to produce opines that the bacteria feed on. Much recent research has concentrated on engineering Ti plasmids to contain other genes that are also transferred to the host plants during infection, creating transgenic plants. One series of experiments have been especially charming.
Tobacco plants have been transinfected by Ti plasmids containing the luciferase gene from fireflies. The product of this gene catalyzes the ATP- dependent oxidation of luciferin, which emits light. When a transfected plant is watered with luciferin, it glows like a firefly. The value of these experiments is not the production of glowing plants but rather the use of the glow to “report” the action of specific genes.
In further experiments, the promoters and enhancers of certain genes were attached to the luciferase gene. As a result, luciferase would only be produced when these promoters were activated; thus, the glowing areas of the plant show where the transfected gene is active.
One of the more recent reported systems developed uses a gene from jellyfish that produces green fluorescent protein. The value of this system is that it “reports” when ultra-violet light falls on it, rather than it requiring an addition, as in the luciferase system (see Tamarin, 2002).
Example # 3. Reporter System:
Two reporter systems are used to indicate that a transfection experiment was successful. Plants can be transfected with the Ti plasmids of Agrobacterium tumefaciens. When a plant is infected with A. tumefaciens containing the Ti plasmid, a crown gall tumor is induced transferring the T- DNA region.
Those cells transfected with the T-DNA are induced to grow as well as to produce opines that the bacteria feed on. Much recent research has concentrated on engineering Ti plasmids to contain other genes that are also transferred to the host plants during infection, creating transgenic plants. One series of experiments have been especially charming.
Tobacco plants have been transinfected by Ti plasmids containing the luciferase gene from fireflies. The product of this gene catalyzes the ATP- dependent oxidation of luciferin, which emits light. When a transfected plant is watered with luciferin, it glows like a firefly. The value of these experiments is not the production of glowing plants but rather the use of the glow to “report” the action of specific genes.
In further experiments, the promoters and enhancers of certain genes were attached to the luciferase gene. As a result, luciferase would only be produced when these promoters were activated; thus, the glowing areas of the plant show where the transfected gene is active.
One of the more recent reported systems developed uses a gene from jellyfish that produces green fluorescent protein. The value of this system is that it “reports” when ultra-violet light falls on it, rather than it requiring an addition, as in the luciferase system (see Tamarin, 2002).
https://www.biologydiscussion.com/animals-2/transgenic-animals/3-important-examples-of-transgenic-animal-genetics/84652
TY for your input. Interesting stuff !