Superparamagnetic nanoparticle delivery of DNA vaccine (SPIONS)
(pubmed.ncbi.nlm.nih.gov)
?️ DISCUSSION ?
You're viewing a single comment thread. View all comments, or full comment thread.
Comments (18)
sorted by:
Abstract The efficiency of delivery of DNA vaccines is often relatively low compared to protein vaccines. The use of superparamagnetic iron oxide nanoparticles (SPIONs) to deliver genes via magnetofection shows promise in improving the efficiency of gene delivery both in vitro and in vivo. In particular, the duration for gene transfection especially for in vitro application can be significantly reduced by magnetofection compared to the time required to achieve high gene transfection with standard protocols. SPIONs that have been rendered stable in physiological conditions can be used as both therapeutic and diagnostic agents due to their unique magnetic characteristics. Valuable features of iron oxide nanoparticles in bioapplications include a tight control over their size distribution,
magnetic properties of these particles, and the ability to carry particular biomolecules to specific targets. The internalization and half-life of the particles within the body depend upon the method of synthesis. Numerous synthesis methods have been used to produce magnetic nanoparticles for bioapplications with different sizes and surface charges. The most common method for synthesizing nanometer-sized magnetite Fe3O4 particles in solution is by chemical coprecipitation of iron salts. The coprecipitation method is an effective technique for preparing a stable aqueous dispersions of iron oxide nanoparticles. We describe the production of Fe3O4-based SPIONs with high magnetization values (70 emu/g) under 15 kOe of the applied magnetic field at room temperature, with 0.01 emu/g remanence via a coprecipitation method in the presence of trisodium citrate as a stabilizer.
Naked SPIONs often lack sufficient stability, hydrophilicity, and the capacity to be functionalized. In order to overcome these limitations, polycationic polymer was anchored on the surface of freshly prepared SPIONs by a direct electrostatic attraction between the negatively charged SPIONs (due to the presence of carboxylic groups) and the positively charged polymer. Polyethylenimine was chosen to modify the surface of SPIONs to assist the delivery of plasmid DNA into mammalian cells due to the polymer's extensive buffering capacity through the "proton sponge" effect.
Also more info at: https://www.sciencedirect.com/topics/medicine-and-dentistry/superparamagnetic-iron-oxide-nanoparticle
Looking at this paper, I don't think these particular magnetite nanoparticles (or any similar small crystal) would be compatible with the Ad26 (J&J/AZ) vaccines, nor the mRNA (P/M) vaccines (at least not as presented in this paper).
These magnetite nanoparticles, due to a slight negative charge on their surface, as well as compatible hydrophobicity attract positively charged slightly hydrophobic polymers (a lot of amine groups and carbon chains) as a sort of coat. This polymeric coating then attracts the negatively charged backbone of the genetic material to be transfected (RNA/DNA). The magnetic nature is then exploited for transfection.
Neither the lipid nanoparticles (mRNA vaccines) nor the adenovirus vaccines have these types of positively charged polymers as listed ingredients, nor would they, as they are self contained with the genetic material inside and employ different methods of transfection. I am not seeing (at least from this paper) how these types of systems would aid directly in delivery of these technologies; unless they aren't what they say they are (like at all).
I'm still trying to rectify the anecdotal evidence of the magnetic effect of the vaccines though. This is a good find, and may lead to an understanding of what is going on, even if not directly (assuming those anecdotes are true).